Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements.

نویسندگان

  • Z A Cohen
  • D M McCarthy
  • S D Kwak
  • P Legrand
  • F Fogarasi
  • E J Ciaccio
  • G A Ateshian
چکیده

OBJECTIVE This study assessed the three-dimensional accuracy of magnetic resonance imaging (MRI) for measuring articular surface topographies and cartilage thicknesses of human cadaveric knee joints, by comparison with the calibrated stereophotogrammetric (SPG) method. METHODS Six fresh frozen cadaveric knees and the knees of four volunteers were imaged with a three-dimensional spoiled gradient-recalled acquisition with fat suppression using a linear extremity coil in a 1.5 T superconducting magnet. The imaging voxel size was 0.47 x 0.47 x 1.0 mm. Both a manual and a semi-automated segmentation method were employed to extract topographic measurements from MRI. Following MRI, each of the six cadaveric knees was dissected and its articular surfaces quantified using stereophotogrammetry. The MRI surface measurements were compared numerically with the SPG measurements. RESULTS For six cadaveric knees, the average accuracies of cartilage and subchondral bone surface measurements were found to be 0.22 mm and 0.14 mm respectively and the thickness measurements demonstrated an average accuracy of 0.31 mm. It was found that while most of the error may be attributed to random measurement error, the accuracy was somewhat affected by systematic errors. For each bone of the knee, accuracies were most favorable in the patella, followed by the femur and then the tibia. The more efficient semi-automated method provided equally good and sometimes better accuracies than manual segmentation. CONCLUSIONS This study demonstrates that clinical MRI can provide accurate measurements of cartilage topography, thickness, contact areas and surface curvatures of the knee.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the kn...

متن کامل

Histomorphometrical Changes on the Knee Joints of Male and Female Rats After Moderate Exercise Program

Introduction: Osteoarthritis (OA) is one of the most common joint diseases that is accompanied with cartilage loss and finally leads to joint destruction. The most common joint that is affected in OA is the knee joint. Knee joint OA may lead to significant illness.  Methods: The effect of excessive running load on the development of knee OA was investigated in rats. This study aimed to ev...

متن کامل

Comparison of Three-Dimensional Double-Echo Steady-State Sequence with Routine Two-Dimensional Sequence in the Depiction of Knee Cartilage

Introduction: There are some routine two-dimensional sequences, including short tau inversion recovery (STIR), T2-weighted fast-spin echo (T2W-FSE), and proton-density fast spin-echo for diagnosing osteoarthritis and lesions of the knee cartilage. However, these sequences have some disadvantages, such as long scan time, inadequate spatial resolution, and suboptimal tis...

متن کامل

Weight-bearing MRI of patellofemoral joint cartilage contact area.

PURPOSE To measure contact area of cartilage in the patellofemoral joint during weight bearing using an open MRI scanner. MATERIALS AND METHODS We developed an MR-compatible back support that allows three-dimensional imaging of the patellofemoral cartilage under physiologic weight-bearing conditions with negligible motion artifact in an open MRI scanner. To measure contact areas, we trained o...

متن کامل

A Chick Embryo in-Vitro Model of Knee Morphogenesis

   Background: In this feasibility study, a mechanically loaded in-vitro tissue culture model of joint morphogenesis using the isolated lower extremity of the 8 day old chick embryo was developed to assess the effects of mechanical loading on joint morphogenesis. Methods: The developed in-vitro system allows controlled flexion and extension of the chick embryonic knee with a range of motion of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Osteoarthritis and cartilage

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 1999